491 research outputs found

    Analysis of Long-Term Cloud Cover, Radiative Fluxes, and Sea Surface Temperature in the Eastern Tropical Pacific

    Get PDF
    Grant activities accomplished during this reporting period are summarized. The contributions of the principle investigator are reported under four categories: (1) AHVRR (Advanced Very High Resolution Radiometer) data; (2) GOES (Geostationary Operational Environ Satellite) data; (3) system software design; and (4) ATSR (Along Track Scanning Radiometer) data. The contributions of the associate investigator are reported for:(1) longwave irradiance at the surface; (2) methods to derive surface short-wave irradiance; and (3) estimating PAR (photo-synthetically active radiation) surface. Several papers have resulted. Abstracts for each paper are provided

    Sea surface temperature of the coastal zones of France

    Get PDF
    Thermal gradients in French coastal zones for the period of one year were mapped in order to enable a coherent study of certain oceanic features detectable by the variations in the sea surface temperature field and their evolution in time. The phenomena examined were mesoscale thermal features in the English Channel, the Bay of Biscay, and the northwestern Mediterranean; thermal gradients generated by French estuary systems; and diurnal heating in the sea surface layer. The investigation was based on Heat Capacity Mapping Mission imagery

    Sea surface temperature of the coastal zones of France

    Get PDF
    The results of an investigation to map the various thermal gradients in the coastal zones of France are presented. Paricular emphasis is given to the natural phenomena and man made thermal effluents. It is shown that a close correlation exist between wind speed direction and the offshore width of the effluent

    Satellite-derived photosynthetically available and total solar irradiance at the surface during FIFE's intensive field campaigns

    Get PDF
    Satellite-derived photosynthetically available and total solar irradiance at the surface during First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment's (FIFE) intensive field compaigns are addressed. Graphs showing photosynthetically available radiation (PAR) vs. Julian Day and insolation vs. Julian Day are included

    Trace gas emissions to the atmosphere by biomass burning in the west African savannas

    Get PDF
    Savanna fires and atmospheric carbon dioxide (CO2) detection and estimating burned area using Advanced Very High Resolution Radiometer_(AVHRR) reflectance data are investigated in this two part research project. The first part involves carbon dioxide flux estimates and a three-dimensional transport model to quantify the effect of north African savanna fires on atmospheric CO2 concentration, including CO2 spatial and temporal variability patterns and their significance to global emissions. The second article describes two methods used to determine burned area from AVHRR data. The article discusses the relationship between the percentage of burned area and AVHRR channel 2 reflectance (the linear method) and Normalized Difference Vegetation Index (NDVI) (the nonlinear method). A comparative performance analysis of each method is described

    A Myc-regulated transcriptional network controls B-cell fate in response to BCR triggering

    Get PDF
    BACKGROUND: The B cell antigen receptor (BCR) is a signaling complex that mediates the differentiation of stage-specific cell fate decisions in B lymphocytes. While several studies have shown differences in signal transduction components as being key to contrasting phenotypic outcomes, little is known about the differential BCR-triggered gene transcription downstream of the signaling cascades. RESULTS: Here we define the transcriptional changes that underlie BCR-induced apoptosis and proliferation of immature and mature B cells, respectively. Comparative genome-wide expression profiling identified 24 genes that discriminated between the early responses of the two cell types to BCR stimulation. Using mice with a conditional Myc-deletion, we validated the microarray data by demonstrating that Myc is critical to promoting BCR-triggered B-cell proliferation. We further investigated the Myc-dependent molecular mechanisms and found that Myc promotes a BCR-dependent clonal expansion of mature B cells by inducing proliferation and inhibiting differentiation. CONCLUSION: This work provides the first comprehensive analysis of the early transcriptional events that lead to either deletion or clonal expansion of B cells upon antigen recognition, and demonstrates that Myc functions as the hub of a transcriptional network that control B-cell fate in the periphery

    AVHRR and VISSR satellite instrument calibration results for both Cirrus and marine stratocumulus IFO periods

    Get PDF
    Accurate characterizations of some cloud parameters are dependent upon the absolute accuracy of satellite radiance measurements. Visible wavelength measurements from both the AVHRR and VISSR instruments are often used to study cloud characteristics. Both of these instruments were radiometrically calibrated prior to launch, but neither has an onboard device to monitor degradation after launch. During the FIRE/SRB cirrus Intensive Field Operation (IFO), a special effort was made to monitor calibration of these two instruments onboard the NOAA-9 and GOES-6 spacecraft. In addition, several research groups have combined their efforts to assess the long-term performance of both instruments. These results are presented, and a limited comparison is made with the ERBE calibration standard

    Genetic variations within human gained enhancer elements affect human brain sulcal morphology.

    Get PDF
    The expansion of the cerebral cortex is one of the most distinctive changes in the evolution of the human brain. Cortical expansion and related increases in cortical folding may have contributed to emergence of our capacities for high-order cognitive abilities. Molecular analysis of humans, archaic hominins, and non-human primates has allowed identification of chromosomal regions showing evolutionary changes at different points of our phylogenetic history. In this study, we assessed the contributions of genomic annotations spanning 30 million years to human sulcal morphology measured via MRI in more than 18,000 participants from the UK Biobank. We found that variation within brain-expressed human gained enhancers, regulatory genetic elements that emerged since our last common ancestor with Old World monkeys, explained more trait heritability than expected for the left and right calloso-marginal posterior fissures and the right central sulcus. Intriguingly, these are sulci that have been previously linked to the evolution of locomotion in primates and later on bipedalism in our hominin ancestors

    Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect

    Get PDF
    The launch of ADEOS in August 1996 with POLDER, TOMS, and OCTS instruments on board and the future launch of EOS-AM 1 in mid-1998 with MODIS and MISR instruments on board start a new era in remote sensing of aerosol as part of a new remote sensing of the whole Earth system (see a list of the acronyms in the Notation section of the paper). These platforms will be followed by other international platforms with unique aerosol sensing capability, some still in this century (e.g., ENVISAT in 1999). These international spaceborne multispectral, multiangular, and polarization measurements, combined for the first time with international automatic, routine monitoring of aerosol from the ground, are expected to form a quantum leap in our ability to observe the highly variable global aerosol. This new capability is contrasted with present single-channel techniques for AVHRR, Meteosat, and GOES that although poorly calibrated and poorly characterized already generated important aerosol global maps and regional transport assessments. The new data will improve significantly atmospheric corrections for the aerosol effect on remote sensing of the oceans and be used to generate first real-time atmospheric corrections over the land. This special issue summarizes the science behind this change in remote sensing, and the sensitivity studies and applications of the new algorithms to data from present satellite and aircraft instruments. Background information and a summary of a critical discussion that took place in a workshop devoted to this topic is given in this introductory paper. In the discussion it was concluded that the anticipated remote sensing of aerosol simultaneously from several space platforms with different observation strategies, together with continuous validations around the world, is expected to be of significant importance to test remote sensing approaches to characterize the complex and highly variable aerosol field. So far, we have only partial understanding of the information content and accuracy of the radiative transfer inversion of aerosol information from the satellite data, due to lack of sufficient theoretical analysis and applications to proper field data. This limitation will make the anticipated new data even more interesting and challenging. A main concern is the present inadequate ability to sense aerosol absorption, from space or from the ground. Absorption is a critical parameter for climate studies and atmospheric corrections. Over oceans, main concerns are the effects of white caps and dust on the correction scheme. Future improvement in aerosol retrieval and atmospheric corrections will require better climatology of the aerosol properties and understanding of the effects of mixed composition and shape of the particles. The main ingredient missing in the planned remote sensing of aerosol are spaceborne and ground-based lidar observations of the aerosol profiles
    corecore